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A new space-marching method for the integration of the Euler equa- 
tions is developed. It is robust and can deal with more complicated con- 
figurations, The Euler equations are formulated quasi-conservatively 
and a split-matrix method is used in order to apply a proper upwind 
discretisation. The eigenvalues and the eigenvectors of the rather 
complicated hyperbolic system in space are calculated. The bow 
shock is fitted using the RankineHugoniot equations together with the 
suitable characteristic compatibility equation. The calculation of the 
flow variables at the wall is carried out by using a modification of the 
“post correction” technique which is explained in detail in this paper. 
The finite difference equations have been solved by applying a three- 
step Runge-Kutta scheme, which was also successfully used for the 
solution of the time-dependent Euler equations. The validation of the 
method is done by a careful discussion and a detailed comparison of the 
results with the ones of other methods. Some three-dimensional 
applications will be given. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The development of future space transportation systems 
requires effective tools for the determination of hypersonic 
flow fields. For pure supersonic or hypersonic flow regions 
the application of space-marching methods is the most 
economical way to treat the aerodynamical problems. 
External flow fields around re-entry bodies like HERMES 
or two-stage systems to orbit like EHTV/upper stage 
(European hypersonic transport vehicle) contain com- 
plicated systems of strong and weak discontinuities (shocks 
and shear layers) which may interact with one another. 
Internal flow fields like inlet and nozzle flows are of the 
same complexity. 

There exist a lot of space marching methods for the 
solution of the steady Euler equations, e.g., [l-8]. A time- 
dependent method which has the ability to step in space, 
if the velocity in the marching direction is supersonic, 
employing a modern upwind biased TVD-scheme is 
reported in [9]. The general strategy in modern methods is 
to use the characteristic wave propagation idea for con- 
structing appropriate discrete schemes. For that one needs 

an eigenvalue decomposition of the corresponding flux 
matrices. For a set of primitive variables this can be found 
in [IO]. For the conservative variables the decomposition is 
given in this paper. 

A set of right-hand eigenvectors for Cartesian coordinates 
(3D case) is proposed in [ 111 and a complete similarity 
transformation for the two-dimensional Cartesian case is 
presented in [ 121. 

Some of the above-mentioned methods have their 
undeniable merits for flow field calculations around simple 
and smooth bodies (see, for example, [ 13]), where changes 
of the curvature of the body contour are not too large, espe- 
cially in the case of concave curvatures. Concave contours 
lead to the production of embedded shock waves which may 
or may not interact with the bow shock. In the past this 
often was the reason for stability problems which could not 
be overcome. 

In this paper a robust split-matrix method for the integra- 
tion of the three-dimensional steady Euler equations in 
general coordinates is presented. The Euler equations are 
formulated quasi-conservatively. 

The marching operator is solved by a Runge-Kutta 
space-stepping procedure. In the case of external flows the 
bow shock can be both fitted or captured. In the bow shock 
fitting case this means that the numerical grid used is a 
function of the solution and will be generated during the 
computation step by step. 

The algorithm for impermeable boundaries is given by 
the post-correction technique [14, 161 applied to the 
appropriate characteristic compatibility equation for steady 
three-dimensional Euler equations. An upwind biased 
third-order discretisation with respect to the characteristic 
direction is used to approximate the partial derivatives in 
the crossflow plane. 

The goal for the development of this robust method was 
to have a numerical tool with which the flow field around 
rather complicated three-dimensional space transportation 
systems can be determined. Therefore, detailed results are 
presented for the above-mentioned two-stage system at two 
trajectory points. 
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2. THE STEADY EQUATIONS OF MOTION 

The unsteady quasi-conservative Euler equations have a 
good shock capturing capability as was demonstrated in 
[17], where blunt body flows were calculated with Mach 
numbers up to M, = 4. The presented results compare well 
with the ones of a shock fitting method. The same is valid for 
the steady quasi-conservative Euler equations, especially 
because in pure supersonic or hypersonic flows the 
embedded shocks are only weak [6-81. In Cartesian 
coordinates one has 

(1) 

The system (1) is hyperbolic in the z direction which means 
that the matrices J-‘K and J-‘L have only real eigen- 
values. For arbitrary coordinates (5, q) in the crossflow 
plane-while the z-coordinate is retained-one obtains 

au -au -au 
Jz+Kz+Lz=O (2) 

with UT = (p, pu, pv, pw, e) and the total energy per unit 
volume is 

1 
e=-p+~p(u2+~2+W2) 

Y-1 

(p is density; p is pressure; U, u, w  are Cartesian velocity 
components). - - 

The matrices J, K, L can be found in the Appendix, where 
K and 1 are defined by 

R= 55, + KC, + Lt,, 

~=J~,+K~,+L~I~. 

The system of Eq. (2) is to be solved by a split matrix 
method similar to that in [15-171 for the unsteady equa- 
tions. Therefore one has to diagonalize the matrices J-‘R 
und J - ‘1. (Because the procedure is the same for both 
matrices, only J - ‘R has to be considered. In the case of 
J-l& one has to replace 5 by v].) 

The eigenvalues 1 are calculated using the relation 

det IJ-‘R- AZ1 = 0, Z= identity matrix. 

This reduces to 

(Au - 0,)3 [(Au - q2 

- c2(A2- 25,n + lVQ2)] = 0 

with IV51 = Jm It is well known that the matrices A, B, C are connected 

(3) 

(4) 

and 0, = the contravariant velocity component in the 
c-direction: 

One has 

( 
f J(u’ - c’)( r; + t;) + (u<, + w&)2 c 

> 
(5) 

h/5 = 
- c2tz + MO, 

u2 - c2 

(see also Ref. [lo]) 
In order to diagonalize the matrix J - ‘R using the 

equation 

T~‘J-%A,-I~T~~ =0 (6) 

or 

(J-‘R- SI) Ri” = 0 

for the right-hand eigenvector R,” 

(7) 

(L;)= (JplR-AjZ)=O (8) 

for the left-hand eigenvector L!, j = 1 . . .5, 

4 denotes quasi-conservative 

with 

one has to determine the matrices of the right-hand eigen- 
vectors T, and the left-hand eigenvectors T F, ‘. 

The matrix J -‘K looks so complicated that it seems 
completely impossible to carry out the arithmetic work 
for the determination of the eigenvectors evaluating Eq. (6) 
(J-‘Ris given in the Appendix). 

One way to overcome this problem consists in con- 
sidering the equations of motion in non-conservative 
variables, YT = (p, U, u, w, p). One has 

ay -ay -at- Adz+Bdl+C-&=O. @a) 
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- - 
with the matrices J, K, L by a similarity transformation (see, 
e.g., [7]). For example, one obtains 

(The matrices A, B, B, M, M -’ can be found in the 
Appendix.) 

This means that A - ‘B and J ~ ‘R have the same eigen- 
values, Eqs. (5), and the eigenvectors are calculated by 

(7a) 

or 

(Li”)T (A - ‘B - ;liZ) = 0, @a) 

where # denotes non-conservative, 
Then the relations hold: 

MR;= R;; (L;)= M-l= (Lj), (10) 

It may be of interest to know that, in the two-dimensional 
case, the eigenvectors are independent of the selected coor- 
dinate system. Let the frame of reference be chosen by the 
Cartesian coordinates (x, y) and the arbitrary coordinates 
by (<, r~) with <(x, y) and ~(x, y). The total derivatives are 
defined by 

dt=Ldx+t,dy 
dq = qX dx + qy dy. 

The eigenvalue equation in (x, y) coordinates is 

(11) 

det(B - piA) = 0 (12a) 

with 

dr pi - z ( & direction of the Mach lines and 
’ direction of the streamline, 

i= 1,2, 3) 

and in (5, q) coordinates, 

det(B - 8,A) = 0 (12b) 

with 

_ dnl 
zi,‘zli; 

A = A<, + B&,, B= Aqz, + Bqv, A and B are the two- 
dimensional variants of the matrices in Eq. (2a). 

Then from Eqs. (1 l), (12a), (12b) it follows that 

and, finally, the characteristic equations 

(B-piA)&= 

(B-6,A) &o 

(13) 

(144 

(14b) 

are valid (see Eq. (7a)). Up to a constant the right-hand 
eigenvectors Ki and & are identical. This is not admissible 
in three dimensions. 

The diagonalisation procedure for the matrices of the 
non-conservative equation of motion is, for example, given 
by 

Q,lA-lB-A,-~,Q,l=O. (64 

The right-hand eigenvectors Ry,2,3 belonging to the triple 
eigenvalue A,-, have in common that the fifth component 
has to be zero. They are constructed such that neither the 
left-hand eigenvectors for the non-conservative equations 
nor the right- and left-hand eigenvectors for the quasi- 
conservative equations are being singular in any possible 
point of an appropriate flow field. 

One finds 

1 

0 1 0 Ad2 +x:, Ad2 + 4, 
u 0 0 - (dx, + ux;) dx, - ux; 

Q,= v -5, 5, 4x(du - ~2) - L(du + xd 
w 5, -L 4,(du-x2) -t,(du+x,) 
00 0 p(u2x; +x:, p(u2xf +x:, 1 

W) 

; 

0 UX; x2rx 

Q;‘=’ :I 

0 0 

x4 
-4vSy--L) u25,+ wx2 

0 -x,/2d u5,Pd 
0 x,P’ - u5,Pd 

x25, 

0. 

4lP 

-(d*+x;) 

-(~'t,+~x2) -(d*+x:)-(v~,-w5,)lp 

ut,Pd WP 

- u5,Pd WP 1 

. 

(15b) 

581/102/2.7 
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The abbreviations are: 

x:=g+g; 

x2 = UC, + d, 

xq = 242x: +x; 

d2+; 

ferential equation is solved using a three-step Runge-Kutta 
scheme, which has the form 

u(O) = U” 

U(l)= V-a, AZ P(V) 

Uc2)= V-a, AZ P(U(“) (18) 

Uc3’ = U” - a3 AZ P( Uc2’) 

U n+ 1 = u(3) 

6, =y- 1, 

y = ratio of specific heats, 

c = the speed of sound. 

P(U) contains the numerical approximation of the spatial 
derivatives in the crossflow directions P(U) and a nonlinear , 
artificial diffusion term D which is necessary to prevent 
oscillations near shock waves. One has 

And finally by the similarity transformation one obtains P(U)=(P(U)-D). 

MQi; = *, and Q+-‘= Te’. 
A MacCormack type diffusion term D is selected [19]. In 
order to investigate the accuracy of the scheme it is assumed 

The matrices TE, and T; ’ are lengthy; they are written down that u is sca1ar~ 
in the Appendix (A9), (AlO). 

The matrices in Eq. (2) are split due to the sign of their 
eigenvalues. One obtains 

ci’(z)=$= -P(U, z), p ,dp 
” dU 

TE+ (J-IQ’ g + + (J-‘R)- 5 - 
U”(z) = P”P 

U”‘(Z) = -(PuuP2(U) + (Pu)2 P(U)), 

(19) 

+(J-‘z)+; ++(J-‘L)-$ -=O (16) where P( U, z) = P(U) is independent of z. 
Scheme (18) yields, for U”+ ’ = U(z + AZ), 

with U(z+Az)= V-a3 Az 

(J-‘R)= (J-‘R)f + (J-‘R)- 

= T&A,+_,,+ A,,,) T;l. 

x P( U” - a, AZ P( U” - a, AZ P( U”))). (20) 

In the following, the index n and the argument U of P 
have been dropped. The Taylor expansion is 

The space derivatives in the crossflow plane are 
approximated by third-order upwind-biased formulas U(z+Az)=U-AzP+~ u (Az)‘~ p 

which are already used in the time dependent split-matrix 
methods [17, 181: - 

Using a linearized version of P with respect to U one obtains U,l,’ =&J~2-6U~~,+3Um+2U,,,) 
t: , 

u,l, = -&L+,-6U,+,+3U~+2U,-,). 

(17) P(U-aiAzP)=P-aiAzPP,; Pa) 

e in the non-linear case one obtains at least 

After introducing the approximations for the space 
derivatives of the crossflow in Eq. (16) one has an ordinary 

P(U-aiAzP)=P-aiAzPP, 

differential equation in the hyperbolic coordinate z. This dif- + $(aj AZ)’ P2Puu, i= 1,2, 3. W’b) 



Inserting Eq. (22a) in Eq. (20) yields 

U(z + AZ) = U- a3 AZ P + a,a2(Az)* PP, 

- a,a,ai(Az)3 P(Pu)‘. 

Comparison with Eq. (21) shows that for a3 = 1 and a, = 4 
the scheme is second-order accurate. Employing Eq. (22b) 
one finds 

U(z + AZ) = U - a3 AZ P + a3a,(Az)2 PP, 

- ia,a,(Az)3(2a, P(Pu)’ 

+ a, P2P,,) + 0( (4~)~). 

Also in this case only second-order accuracy can be attained 
(a3 = 1 and a, = 5). The underlined term can be regarded as 
the influence of the non-linear part of P on the third-order 
terms (see also [20]). The coefficient a, is chosen a, = 0.25. 
For this value the stability region can be extended to 
CFL = 1.75. Numerical experiments have shown that this 
maximum CFL number can always be applied except for 
flows with strong bow shock/embedded shock interactions; 
there the CFL number has to be reduced to CFL M 1.35. 

3. IMPERMEABLE WALL BOUNDARY CONDITION Let 

In two dimensions the eigenvalues refer directly to the 
slopes of the streamline (A,,,), the right running Mach line 
(&), and the left running Mach line (A,), respectively. In 
three dimensions the problem is more complicated, but the 
pictures coincide with each other if one considers the situa- 
tion for a constant q-coordinate. Nevertheless, the main 
idea for the handling of the impermeable wall boundary 
condition is, that in Eq. (16) the characteristic components 
(the z-5 space is considered) which transfer the influence 
from inside the flow field to the wall are retained (Aj > 0; 
j= 1, 2, 3, 5), while the one component which would trans- 
fer the influence from inside the body to the wall is replaced 
by the kinematic boundary condition [ 161. A nice formula- 
tion of this process for the unsteady Euler equations is 
carried out in [ 143. This way will also be followed here by 
employing the steady Euler equations. It is assumed that 
the “characteristic variables” defined by IV,* = T; ’ U,* , 
calculated with the field algorithm at the wall, are correct 
forj= 1, 2, 3, 5: 

then from Eq. (23) it follows that 

(T”Uo)T= (w,, w2, w3, PO,, w5)o 

and, with Zi = Z4 ; (I- Z4) Z4 = 0, one finally finds 

QT’ = (p, PU, ~0, pw, e)o* 

w,*‘= (w,, w2, w3, w49 w5)0*. 
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Then by replacing the fourth component of the relation with 
the wall boundary condition (~0, = 0) one obtains 

= (I- Z4) T,’ U,* (23) 

(the subscript 0 refers to 5 = 0 at the wall contour): 

(24) 

u, = qz- Z4) T-‘u,* 

= iJ,* - Tz4T-‘u,* 

=U,*-AU,*. (25) 

Again the direct evaluation of the second right-hand term of 
Eq. (25) seems hopeless. Therefore the way via the non- 
conservative formulation is utilized again with ~~~ --a-~--- ~-~~ 
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G=p-'M=(z-z,)Q,~+z, 

00000 

00000 

00000 

p=MG-'. 

The equation for the correction of the flow variables at the 
wall is then 

u,= ug*- P@, 
d[dO, + ux: - x2 t,] 

x d*u + du 5, + t,(ut, - wt,) . (26) 
d*w + du 5, - Uut, - wt,) 
q26,(d2+x;)+2(1-6,)x4 

The calculation of the preliminary flow variables at the wall 
using the field algorithm requires the values in two artificial 
points inside the body. These points have to be determined 
by an extrapolation. The extrapolation formula proposed in 
[21] gives good results if it is applied to the points U-i and 
u -2: 

Uk=1.5Uk+I+1.5Uk+2-3.5Uk+s+1.5Uk+4 

k= -1, -2. 

4. BOW SHOCK WAVE BOUNDARY CONDITION 

The best way to deal with shock waves is to lit them. In 
three dimensions this will be, in general, very difftcult and 
sometimes impossible. An exception to this rule is for bow 
shock waves of outer flow fields of rather arbitrary con- 
figurations. Bow shock wave fitting procedures (formulated 
for ideal and equilibrium real gas assumptions) for time- 
marching [ 17,241 (time dependent grids) and space- 
marching [6-81 (the grid is a function of the bow shock 
wave contour) methods are well developed and have had 
their merits in the past. The method here will have the 
capability to fit bow shock waves, also, in the case of flows 
around complex configurations like hypersonic transports, 
re-entry vehicles, etc. The derivation of the bow shock 
fitting algorithm follows the philosophy in [6, 8, 17). At the 
bow shock wave boundary one has six unknowns, five of 
them are the flow variables and one is the function of the 
shock contour. To determine these unknowns one has the 
live Rankine-Hugoniot equations and one characteristic 

equation carrying the information from inside the flow field 
along a Mach line (in a locally two-dimensional pattern) to 
the bow shock wave boundary. 

The complete set of equations is 

PV,=Pm V”, continuity (27a) 

P+PraV”coV”=Pco+PmV~m normal 

momentum W’b) 

VT = v,, two independent 

equations of 

the tangential 

momentum (274 

e+p e,+p, -= 
P PCC 

energy W) 

14Tg1 {g+&$I++A}=O characteristic 

with 

equation We 1 

c2 1 e+poH,- 
P 

y-1+p2+u2+W2), 

H0 = total enthalpy, e = total energy, “co” = free stream 
condition 

v =v grad< Y Igrad 51’ 
v+xg 

V, = velocity component normal to the shock 

V, = velocity vector in the plane tangential to the shock. 

This leads to a system of equations for the live flow variables 
and the function of the shock wave contour which has the 
form 
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e=e P+ l-Es 
mPm ( > P 

x PC+- ( 
a’, 

CD Igrad 51'~~ > 

Y a’, 
-- 

Y-1 pm+lgrad512~m 

x 1-P, [ 11 = 0, 
P 

where 

a, =(Pu)m 5*+(PuL L+(Pw)m 5, 

c= ,gr&2 t”--45Pm 

E=i?.,-C 
2 

G= Igraii2 pm t4s 

t, = t425, + t435x + t441y 

&o=(PL t41+ (PUL t,,+(PQ)m t43 

+ (PWL t4,+e,t4, 

B=$B,+ 1-F aw t 
00 [ 1 cc Igrad 512 ” 

+t45 1-p [ 1 PO2 

X f-P,- 
a', 

m Igrad 51’ pm 1 ’ 

where the eigenvalues 1:,s are calculated by Eq. (5). From 
this it follows for the step size AZ that 

(30) 

Numerical experiments have shown that the relation 

The t4i (i = 1 . . .5) are the elements of the left-hand eigen- 
vector matrix T[’ (see the Appendix). 

Equation (28) is solved using a Newton iteration for 5; 
which is identical with the derivative of the shock contour 
function with respect to z, F,(z, u) for tJ = 1. 

(A5 min(l/li,,))(Av min(l/Xi,,l) 
Az’CFLx (A5 mW/~!.,)) + (4 min(l/Xi,5)) 

(31) 

(28) gives best results, where CFL is defined by CFL = 
(~/u)(Az/Ax) (due to the advective test case). In [21] it is 
shown that for the corresponding time-marching three-step 
Runge-Kutta scheme the CFL number could be extended 
for the given choice of coefficients a, (see Eq. (18)) up to 
CFL = 1.75. 

5. DETERMINATION OF THE SPATIAL STEP SIZE 

Stability investigations of an advective type spatial scalar 
equation and physical considerations lead to the conditions 
in the z, r- and the z, q-space, respectively, 

6. RESULTS 

To validate the new method (EULSPACE 2), com- 
parisons are made between these results and the results 
found in the literature, as well as those of the centered 
difference scheme (EULSPACE l), described in [S-S] 
(which is less robust than the new one, but gives highly 
accurate results). 

Cone Flow 

The first example is the flow around a cone with an semi- 
apertural angle E = 10”. For the freestream Mach number 
M, = 2.0, two angles of attack are considered (a = 19” and 
25”). Figures la and 2a show the isobars and the 
streamlines in the conical crossflow plane taken from 
Ref. [22]. These results are compared with the present ones 
in Figs. lb and 2b. The beginning crossflow shock can 

a 

i 

b 

&< 1 

Av’maxm,l IW’ 

(29) 
FIG. 1. Cone flow, semi-apertural angle E = IO”, M, = 2.0: 

(a) Isobars, LY = 19”, Ref. [22]; (b) Isobars, a = 19”, EULSPACE 2. 
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a 

FIG. 2. Cone flow, semi-apertural angle E = lo”, M, = 2.0: 
(a) Streamlines in conical crossflow plane, entropy singularity, and 
crossflow stagnation point, a = 19”, Ref. [22]; (b) Conical crossflow 
velocity vectors, entropy singularity, and crossflow stagnation point, 
a = 19”, EULSPACE 2. 

clearly be seen, where in the present computation the shock 
was more pointed. The entropy singularity and the addi- 
tional stagnation point (which is due to the formation of the 
spiral; for details see Ref. [22]) can be seen in Figs. 2a and 
2b. However, the location of these points is different in the 
two compared predictions. From the tendency, the loca- 
tions found in Ref. [23], Fig. 3, agree better with the ones in 
Fig. 2b. The computational grid has (33, 37) points in the 
crossflow plane (CY = 19’). 

Increasing the angle of attack leads to a rise in vorticity 
generated at the crossflow shock, so that the spiral is now 
well developed. In Figs. 4a, b the pressure fields from 
Ref. [22] and the present one are compared. The agreement 
seems to be rather good. 

The form and the location of the spiral displayed in 
Ref. [22] by streamlines (Fig. 5a) and in this solution by 
conical crossflow velocity vectors (Fig. 5b) look very 
similar. For the CY = 25” case a grid with (33, 73) points was 
used. 

a 

! 
I’ I / ‘/’ 

E : - - 

b 

FIG. 4. Cone flow, semi-apertural angle E = 10”; M, = 2.0: 
(a) Isobars, a = 25”, Ref. [22]; (b) Isobars, a = 25”, EULSPACE 2, fitted 
bow shock. 

The same cone with a hypersonic freestream Mach num- 
ber (M, = 8) and an angle of attack CY = 12” is considered in 
the following. Figures 6a, 7a, 8a show the solutions of 
EULSPACE 1 and Figs. 6b, 7b, 8b show the corresponding 
solutions of EULSPACE 2 (present method). In both 
computations the grid size was (17, 19) points in the (l, q) 
crossflow plane (z = const plane). 

The comparison of the Mach number isoline plot 
(Figs. 6a, b) shows good agreement except in a small region 
on the leeward side. This is due to the coarse mesh (17 
points from body to shock, 19 points in the meridional half 

a b 

FIG. 3. Cone flow, semi-apextural angle E = 10”; M, = 2.0: Conical 
crossflow streamlines, Ref. [23 ] o Conical crossflow velocity vectors, 
EULSPACE 2; entropy singularity and crossflow stagnation point, 
a=20”. 

FIG. 5. Cone flow, semi-apertural angle E = 10”; M, = 2.0: 
(a) Conical crossflow streamlines, a = 25”, Ref. [22]; (b) Conical crossflow 
streamlines, a = 25”, EULSPACE 2. 
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+ 

FIG. 6. Cone flow, semi-apertural angle E = IO”, M, = 8, a = 12”, (17, 19) grid points: (a) Machnumber isolines, EULSPACE 1; (b) Machnumber 
isolines, EULSPACE 2. 

FIG. 7. Cone flow, semi-apertural angle E = lo”, M, = 8, a = 12”, (17, 19) grid points: (a) Isobars, EULSPACE 1; (b) Isobars, EULSPACE 2. 

a b 

FIG. 8. Cone now, semi-apertural angle E = IO”, M, = 8, a = 12”, (17, 19) grid points: (a) Total pressure isolines, EULSPACE 1; (b) Total pressure 
isolines, EULSPACE 2. 
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FIG. 9. Cone flow, semi-apertural angle a= lo”, M, =8, a= 12”, 
(17, 19) grid points, Machnumber isohnes EULSPACE 2; tine grid 
solution, (49,37) grid points. 

space v] = O”-180”), where especially in the leeward side 
region the resolution becomes rather bad, so that the 
different methods exhibit a slightly different state of 
approximation to the “true” solution. The plots of the 
isobars (Figs. 7a, b) and the plots of the total pressure 
(Figs. 8a, b) confirm this behaviour. But the overall 
comparison looks rather good. A fine grid solution 

21m 
2ls4 
2als 
225s 
2m 
2351 
2400 
24% 
2sm 
I%# 
2.(ad 
2ssI 
2708 
2754 
2ma 
2oy 
2p1y 
2.ssa 
Mm 
3B5#- 
310s 
3151 
3w 
3x4 
ljlly 
339 
34m 
3.Y 
3561 
3!s# 
3581 
3.m 
37m 
3.79 
Podl 

(EULSPACE 2) is given in Fig. 9 where the isolines of the 
Mach number are plotted. The grid size was (49, 37) points. 
The behaviour of the flow on the leeward side seems to be 
better resolved than in the coarse grid case, but the 
deviations are small. 

Flow around the Butler Wing 

Three-dimensional flows around the Butler wing [25] 
were one of the test cases for numerical methods in the 
AGARD Working Group 07. The free stream Mach 
number was M, = 2.5 and the angle of attack 01= 0”. Five 
contributors have calculated this flow case with completely 
different finite approximation methods and different sizes 
and arrangements of the mesh. 

A very detailed evaluation of these flow fields was per- 
formed and many comparisons between the five solutions 
were carried out. This has led to a data base for this flow 
case in which one can have great confidence. Detailed 
documentation of the results is given in [ 133. The definition 
of the contour of the wing can also be found in [ 133. 

The above-mentioned flow case was selected for a further 
validation check of the present method (EULSPACE 2). 
Flow results computed with EULSPACE 2 and 
EULSPACE 1 (this method was one of the five methods 
used in the AGARD WG07 test case) are compared in 
Figs. l&l 3. 

Figures 10a and b show top views of the Butler wing with 

a 

FIG. 10. Butler wing, M, = 2.5,01= 0”, (17,37) grid points in crossflow planes: (a) Machnumber isohnes on body surface, EULSPACE 2, increment 
AM = 0.05; (b) Machnumber isolines on body surface, EULSPACE 1, increment dM = 0.05; tine grid solution: (33,73) grid points. 
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b 

FIG. lo-Continued 

isolines of the Mach number. Despite the fact that the solu- the results of an EULSPACE 2 solution (Figs. lla, 12a, 
tion with EULSPACE 1 [ 133 (Fig. lob) was performed on 13a) and of an EULSPACE 1 solution (Figs. 1 lb, 12b, 13b) 
a rather fine grid with (33,73) points in the crossflow plane each on a mesh with (17,37) points. An idea of the different 
compared to the EULSPACE 2 (present method) solution mesh arrangements can be found in Figs. lla, b in a 
(Fig, 10a) with a mesh of (17, 37) points, the agreement of crossflow plane z = 0.9L. The outer boundary of the mesh 
the results is very satisfactory, with the exception of a small states the fitted bow shock. The plots of the Mach number 
region in the symmetry plane in the aft part of the wing. isolines drawn for the two crossflow planes z =0.6L and 
These deviations are surely due to the coarseness of the grid z = 0.95L (Figs. 12a, b; 13a, b) show the excellent agree- 
in the plane of symmetry (see Fig. 1 la). Figures 11-13 give ment with each other. 

FIG. 11. Butler wind, M, = 2.5, 01 = 0”. (17, 13) grid points in crossIlow planes: (a) Distribution of grid points in crossflow plane, EULSPACE 2; 
(b) Distribution of grid points in crossflow plane, EULSPACE 1. 



FIG. 12. Butler wing, M, =2.5, a =O”, (17, 13) grid points in crossflow planes: (a) Machnumber isolines in crossflow plane, 
EULSPACE 2; (b) Machnumber isolines in crossllow plane, .z = Of& EULSPACE 1. 

z = 0.6L, 

FIG. 13. Butler wing, M, = 2.5, a = O”, (17, 13) grid points in crossflow planes: (a) Machnumber isolines in crossflow plane, z=O.95& 
EULSPACE 2; (b) Machnumber isolines in crossflow plane, z = 0.95L, EULSPACE 1. 

4.50 

6.00 

FIG. 14. Two-stage hypersonic space transportation system (EHTV) FIG. 15. Two-stage EHTV. Isobars in crossflow plane z= 70m, 
configuration. M, = 4.5, a = 6”, (17,73) grid points. 

330 
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Two-Stage Hypersonic Transport EHTV to Orbit 

In recent years new hypersonic concepts for the transpor- 
tation of space vehicles into orbit have been developed. One 
of these concepts is the two-stage concept, where the orbiter 
is transported up to an altitude of order 35 km by using a 
hypersonic aerodynamic-assisted aircraft and, after separa- 
tion, the orbiter travels to the orbit by employing a rocket 
motor. Figure 14 shows such a transport system. The 
prediction of the flow around this configuration is of major 
interest with respect to the computation of the local and 
global aerodynamic coefficients. In the numerical calcula- 
tions the configuration considered was without the winglets 
of the upper and the lower stage. The total length of the 
lower stage was L = 84 m. For the free stream Mach number 
M, = 4.5 and the angle of attack c1= 6” a solution was 
established. Figure 15 shows the isobars and the position of 

FIG. 17. Two-stage EHTV, M, = 6.8, a = 8”: (a) Pressure distribu- 
tion on body surface leeward side view; (b) Pressure distribution on body 
surface windward side view. 
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the bow shock in the crossflow plane z = 70 m. The shock of 
the wing leading edge and the compression and expansion 
regions which arise due to the flow around the upper stage 
can clearly be seen. The next figures (Figs. 16ad) show 
some evaluations of the flow field for the free stream Mach 
number M, = 6.8 and a = 8”. Isobars in the crossflow 
planes z= 20 m, 70 m, and 84 m are plotted in 
Figs. 16a, b, d. For these flow parameters the bow shock 
intersects the leading edge of the wing just (Fig. 16b) where 
the embedded shock of the leading edge is generated. This 
means that the main part of the embedded shock of the 
leading edge coincides with the reflection of the bow shock 
at this leading edge. The mesh used has (17,73 ) points in the 
crossflow plane (Fig. 16~). 

Finally, Figs. 17a, b show the Mach number distribution 
on the body contour with views from the leeward (Fig. 17a) 
and windward sides (Fig. 17b). 

CONCLUDING REMARKS 

There are a lot of finite approximation methods for the 
integration of the unsteady Euler equations which are based 
on upwind discretisations using the theory of charac- 
teristics. These methods are, in general, rather robust and 
give results of sufficient accuracy. For pure supersonic or 
hypersonic flow regimes the application of space marching 
methods seems to be the most efficient way of solving such 
problems. 

Prediction methods for the calculation of flows around 
three-dimensional complex configurations (in super- or 
hypersonic flow) need robust and efficient algorithms. Due 
to these requirements a split-matrix method for the steady 
three-dimensional Euler equations formulated in arbitrary 
coordinates was developed. Determination of the corre- 
sponding eigenvalues and eigenvectors using conservative 
variables is more complicated than in the unsteady case and 
is to the author’s knowledge published for the first time. 

APPENDIX 

The matrix J: 

J= 
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The matrix KI 

The matrix L can be obtained by replacing 5 by q in the definition of K. 
The matrix J - ‘E 

-x5 -x26, 

z 

-[vxs+(cL2) wS,&] 

0 

4 CCC' - u2) r, - 0x2 1 
- wx5 + ( c2 - u2)( 8, - wis I&,) 4 C(c’ - u2) ry - wx2 1 

x5(c2 - w (c2-u2) o~+x2s,(c2-H) i 

7 

where the total enthalpy is defined by H= (c2 - &/S, + q2 = (e + p)/p and 6, = y - 1; x2 = vl, + WC,; x3 = u2cX - VX,~, ; 
x5 = ~‘5, - WX,~, ; c is the speed of sound; y denoted the ratio of specific heats; q2 = u2 + v2 + w2. 

The matrix A: 

u p 00 0 

The matrix B: 

ov 0 0 0 

00 0 v 0 

The matrix B: 

(A41 

(A9 

The matrix c can be obtained by replacing r by q. 
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The matrix M 

and 
1 

u 

P 

M-l= -3 I- W 
-- 

P 

0 0 

0 0 

0 0 

0 

6, 1. 

0 

1 6 +I' -6,u 6,v 6,w 

1 0 0 0 0 
u P 0 0 0 

V 0 p 0 0 

w 0 0 p 0 

5 2 pu pv pw $ 
1 

G47) 

(A@ 

1 
24 

v--P&’ 
w+Plx 

0 P(d2 + 4) P(d2 + 4) 
0 dP(dU - x2) dP(dU + 4 

Ph p[d% + du r, + &,(v&, - WL)] p [d2V - du <, + <,(v<, - w5,) 1 

-PL p [d2W + du ry - 5,(v& - 4,) 1 p Cd2W - A ry - Me, - WL) 1 
; (A9) 

P4 
2 q2 - 2PWy - WL) 

2 
p(v{y-wrx) PC426,(d2+X:)+2(l--,)Xq1 PCq26,(d2+X:)+2(1--,)Xq] 

24 26, 

! q?x:6, - 2x4 -2UXf(6, - 1) 

Tr’=& 

-p[q26,(d2+X:)-2x‘+1 2up&(dZ +x:, 

2px,-926,Cp(d2+x:)+v~,-w~,1 2ucps,(~*+x:)+(6,-1)(u~,-w~,)] 
49=/2 --(dud, +x2) 

bq2/2 -(duS, -x*) 

-344 -x*TJ -2(w46, -x*ly) 2x:6, 

2pu&(dZ +x:, 2&,(d2 + x:, -2pS,(dl+xi) 

2Cp~~,(~2+x:)+92r,+~(~,-1)(u5,-wT,)l 2cpws,(~2+x:)-q2~,+w(6,-l)(u~,-w5,)l -2~(dz+x:)+u~,-w~,] 

-(dub -4,) -dw6,-u<,) 6, 

--(do 6, + UT,) - (dw 6, + 4,) 6, 

(AlO) 

The abbreviations are defined in Section 2 (Eqs. (15a), (15b)). 
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